
1 Problem

We are going to prove Wallis’s formula for odd powers with n ≥ 3:∫ π/2
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We are going to use the following formula (problem 80):∫
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2 Proof

We are going to do this in two steps (this is known as proof by induction):

1. Prove that the formula is true for n = 3

2. Prove that if the formula is true for n− 2, it is also true for n.

2.1 Proof for n = 3
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2.2 Prove if true for n− 2 then true for n.

Assuming the formula is true for n− 2, that means∫ π/2
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Now we want to find
∫ π/2
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cosn−2 x dx. Using the formula from problem 80,
we get:∫ π/2
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This completes the proof because it means the formula is true for n = 3 by
the first part. By the second part it is then true for n = 5, since it is true for
n = 5, it is true for n = 7, and so on.
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